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Abstract. Relationships between guantum group and quantum universal enveloping algebra
are investigated. We present what is called the quantum Ashkin—Teller model with general
nearest-neighbour four interaction terms. In the case of vanishing four interaction, it reduces
to two decoupledX X Z chains with surface terms, which has been studied thoroughly in the
framework of quantum universal enveloping algebra symmetry. It is shown that the symmetry
structure of the quantum version of Ashkin—Teller model is the quantum gsdyg2). This
quantum group structure guarantees the integrability of the quantum model.

By using the integrability condition and writing the transfer matfixof lattice models
explicitly as (f g) Faddeev, Reshetikhin and Takhatajan (FRT) introduced a quantum group
structure naturally [1]. In the FRT formalism, the algebraic relations of quantum group
SL,(2) are of the form

ab = gba ac =gqca bd = qdb
cd = qdc bc =cb ad —da = Abc 1)

ad —gbc=1 r=qg—q L

These equations can be rewritten into a matrix form,

RoT1To = ToT1R12 detT =1 (2)
q
where
PR
a7 1  T=1®T
Ri2 = g2 g2 n=TQ® 2=1®T.
PR
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The corresponding Hopf algebra structure of the quantum gfdyg?2) is defined as

Al“ by (a®a+b®c a®b+b®d
c d) \c®a+d®c c®b+d®d

(2 )5
(¢ 9)-(4 1)

On the other hand, as a systematic method for solving the Yang—Baxter equation [2, 3],
the quantum universal enveloping algebra [4, 5] has been intensively studied. The quantum
universal enveloping algebi@, (s/(2)) is a Hopf algebra which is neither commutative nor
cocommutative with generatoks k1, e, f and 1. The corresponding algebraic relations
are

B B k2 — k2
ke = gek kf =q7fk k—k =1 le, f1= =
q

AK)=k®k  Al)=e®k +k®e A(f)=f®k‘1+k®f @)

€k)y=1 €le) =€(f)=0

sy =k s@=-qge  s(f)=—qf.

It was found that the quantum universal enveloping algebra has many applications in
physics systems [6]. For example, in a Hamiltonian system it is an enlarged symmetry that
maintains invariance of equations of motion and allows a deformation of the Hamiltonian
and symplictic form; the configuration space of the integrable lattice model can be analysed
in terms of the representation theory of the quantum universal enveloping algebra. The
guantum symmetry approach based on the quantum universal enveloping algebra is now a
popular topic in different fields of modern physics.

It may be some surprise to notice that there are few physical applications of the quantum
group, which is a more physical origin than the quantum universal enveloping algebra.
In FRT formalism, the quantum group can be identified as a symmetry structure of the
transfer matrix for integrable lattice models. Thus, an important topic in the field is to
discuss the relationships of quantum universal enveloping algebra and quantum group and
then to investigate possible physical applications of the quantum group. Other reasons
for investigating relationships between quantum group and quantum universal enveloping
algebra include opening a way of constructing classical realization of quantum group because
the realizations of the quantum universal enveloping algebra in classical physics systems
have been set up [7-11].

In this letter, we present what is called the quantum Ashkin—Teller model with general
nearest-neighbour four interacting terms, which is shown to possess quantumSgrai@p
symmetry. The quantum group is constructed from the tensor product of two sets of
independent quantum universal enveloping algeldiag!/(2)). The quantum integrability
is guaranteed by this quantum group structure.

The Hamiltonian of the quantum Ashkin—Teller [12, 13] model in the one-dimensional
lattice is of the form

KZU

3
Smn Z( UL+1 + o] Uz+l + cosna UL+1 +isin 77(0 0;}1) — cosn)

K3
smr Z(Tz tha + TPty +cosnttd +ising(r? — 7 ) — cosn)
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+

x (trtly + 1Pt + cosnritd | +isinn(z? — t2,) — cosn)

1

where we have used the notations

N

11 2 2 3
Y (@tohy +ofaf + cosnolo;
i—1
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3

® L +isinn(o? — o) — cosn)

®)

o = (Lo, ®1w,) @ e, ®12.) ® - ® (04 ® 1w, ® -+ ® (Lw), ® L),
7= 1w, ®1ly) ® Ly, ®12,) @ ® g, @ T4) @ @ (Lu, ® Lw),)-

Hereo!, v’ (i =1, 2, 3) are two sets of independent Pauli matrices (/] = 0) andy is

a free parameter.

If the coupling constank, = 0, the system reduces to two decoupled one-dimensional
X XZ models with boundary terms. ThéX Z chain with boundary terms has recently been
studied thoroughly, and it was found that it possesses quantum universal enveloping algebra

U, (sl(2)) symmetry [14, 15]. This is to say that

we havByxz, U,(sl(2))] = 0. The

generators of the quantum universal enveloping algeb(a/}ﬁ2 ® Vr1/2)®N is defined as

N

S5 =1 (@' ®1p,) ®- ® (g% ® Li-1,)
i=1

®(s, ® Liy,) ® (g "+e @ Lisp),) ®

- ® (g @ Ly,

7% = (@' ®11),) ® (¢ ®1p,) ® - ® (¢°™ ® L))

i1 i
SJ_EU

and

N
$E=) (o, ® g0 ® - ® (Li-y, ® ')
i1

O, ® ) ® (Li+n, ® g 1) ®

e ® Ay, ® q,st)f)

qu =1p, ® qs(31)r) ® (1), ® q5<32>r) ® - ® A, ® qsfmr)

i 1_i
sr_ET‘

It is easy to check that the generatsgs and S? (S and S3) satisfy the quantum universal

enveloping algebra relations dij‘g(”(sl(Z)) as well
By using theR’® matrix

q1/2
—-1/2

(7)
Rgz = q*1/2A qfl/z

g2

as associated Hopf algebra structure.

(6)

we can write the quantum universal enveloping algelbj;éf)(sl(Z)) into a more abstract

form [16, 17]

o(t) £ + _rErx o)y — +
R12 La(r)lLa(r)g - L2 Ll R12 R12 La(r)lLU(r)z
+ + SN ==
AU(T)(LG(T)) = La(r)®La(r)
s3 +
g —qAS, _
So(r)(L:(t)) = ( q_Sgi)(T) So(0)(Lyry)

6U(r)(chrE(r)) =1

+ - (T)
= La('t:)gLzr(r)lR;.XZ‘r
( qfsg(r) ) (7)
= + s2
_q)\'S(f @) q o (1)
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where we have used the notations
=SS0 aST S0
L= (1 o) Ly, =1 5
o(0) g%o o (1) —AS; ) g 5w
and the operatio® between two matriced and B is defined as

(AQB);; = Aix ® By;.

By using the operatorif(r), which are defined on the spade,(l/z) and V2,
respectively, we can introduce four (and only four) nontrivial tensor operators on the space
v 2 g y2, ie.LTLY, LYL;,L;L}, andL L, . Inthe following (to agree with FRT's

notation), we denote these tensor operator¥ asd write them explicitly as

a b
r=(4 ). ®)
From equation (7), we know that the new operatBrsatisfy the equation
R 2T\ To = ToT1R12 detT = 1. 9)
q

This can be verified straightforwardly. For example, o= LT ®L_, we have
a'b' = (l;—(ll) Qlyy + l:(12) ® L (o1 - (l:(lz) ® Ly (22)
_ g+ g+ - - + g+ - -
- la(ll)l(r(lZ) ® lr(ll)lr(22) + la(lZ)la(12) ® 11(21)11:(22)
= ql;—(lZ)l:(ll) ® lr_(22)l1:_(ll) + ql:az)l:(u) ® lt_(22)lr_(21)
= Q(l;(lz) ® l;(zz)) ) (l:(ll) ® l;(ll) + l:(lz) ® l;(21))
— qb/a/
and
ad — f]b/cl = (l:(n) ® lr_(ll) + l;r<12) ® lf_(zl)) : (l:(zz) ® lr_(22))
—61(1:(12) ® lr_(22)) : (l:(22) ® 1;(21))

_Jt + - - + + - - + + - -
- la(ll)la(22) ® lr(ll)lt(ZZ) + 10(12)10'(22) ® lr(Zl)lr(ZZ) - qla(12)10(22) ® lr(22)lr(21)
=1

and so on.
Let P® be the transposition operator [18] /2 ® V1/2 which satisfies

P®: AQB — B®A. (10)
Then the comultiplicatiom\ for these tensor operato?s can be introduced as
A= (d® P®? ®id)(A,QA,). (11)

As an example, fof = LY®L7, it is easy to check that
a/ b/ . R . . + & —
A ¢ d =(d® P°® |d)(AL;®AL;)(Lg ®LT )

=(d® P®?@id)(LIQLI®L ®L;)
= (LIQL)Q(LI®LY)

a b\ .[(a b
(e )
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Almost the same relations for other three tensor operdforan also be obtained in the
same way. Therefore, in general, we have

AT =TQT. (12)
Define the co-unit operatar as

€ =€, Q€. (13)
Then, we have

€T =1 (14)
Finally, the antipode operataris of the form,

s = P(s; ® s,)P®. (15)

A straightforward calculation gives that

a b . d’ _q—lb/
(& 0)= (8 ). (16)

Now, we are in a position to conclude that the symmetry of the quantum Ashkin—Teller-like
model is the quantum groupL,(2), i.e. [H, T] = 0. It should be noted that there are four
types of the tensor operatorsand all of them satisfy the quantum group relations strictly.

It is well known that the decoupled system can be solved by using the quantum universal
enveloping algebra approach [19]. Now, we know that the only symmetry structure of the
guantum Ashkin—Teller-like model is the quantum grdup, (2). There are infinite physical
guantities which commute with the Hamiltonian and thus this system is integrable. A group
analogy of the quantum universal enveloping algebra symmetry approach to the system is
apparent. Further investigations in this direction are in progress [20].

The authors would like to th&mG X Ju, X C Song ad S K Wang foruseful discussions.
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